Organic Chemistry, 6th Edition L. G. Wade, Jr.

Jo Blackburn Richland College, Dallas, TX Dallas County Community College District © 2006, Prentice Hall

Introduction

- Spectroscopy is an analytical technique which helps determine structure.
- It destroys little or no sample.
- The amount of light absorbed by the sample is measured as wavelength is varied.

Types of Spectroscopy

- Infrared (IR) spectroscopy measures the bond vibration frequencies in a molecule and is used to determine the functional group.
- Mass spectrometry (MS) fragments the molecule and measures the masses.
- Nuclear magnetic resonance (NMR) spectroscopy detects signals from active nuclei and can be used to distinguish isomers.
- Ultraviolet (UV) spectroscopy uses electron transitions to determine bonding patterns. =>

Electromagnetic Spectrum

- Examples: X rays, microwaves, radio waves, visible light, IR, and UV.
- Frequency and wavelength are inversely proportional.
- $c = \lambda v$, where c is the speed of light (3.00x10⁸m/s)
- Energy per photon = hv, where h is Planck's constant, 6.62 x 10⁻³⁷ kJ•sec.

The Spectrum and Molecular Effects

Chapter 12

Mass Spectrometry

- Molecular weight can be obtained from a very small sample (but it is destroyed).
- It does not involve the absorption or emission of light.
- A beam of high-energy electrons breaks the molecule apart.
- The masses of the fragments and their relative abundance reveal information about the structure of the molecule. =>

Electron Impact Ionization

A high-energy electron can dislodge an electron from a bond, creating a radical cation (a positive ion with an unpaired e⁻).

Separation of lons

- Only the cations are deflected by the magnetic field.
- Amount of deflection depends on *m/z*.
- The detector signal is proportional to the number of ions hitting it.
- By varying the magnetic field, ions of all masses are collected and counted. =>

The Mass Spectrum

Relative abundance for fragments are graphed or tabulated as a function of their mass/charge ratio.

The GC-MS (or any other hyphenated technique) A mixture of compounds is separated by gas chromatography, then identified by mass spectrometry.

laser calif

fixed mirror IR source IR source IR source IR source IR source Laser calibration beam Sample Generation State Nat. In:

High Resolution MS

- Masses measured to 1 part in 20,000.
- A molecule with mass of 44 could be C₃H₈, C₂H₄O, CO₂, or CN₂H₄.
- If a more exact mass is 44.029, pick the correct structure from the table:
- C_3H_8 C_2H_4O CO_2 CN_2H_4 44.0626044.0262043.9898344.03740

Molecules with Heteroatoms

- Isotopes: present in their usual abundance.
- Hydrocarbons contain 1.1% C-13, so there will be a small M+1 peak.
- If Br is present, M+2 is equal to M⁺.
- If CI is present, M+2 is one-third of M⁺.
- If iodine is present, peak at 127, large gap.
- If N is present, M⁺ will be an odd number.
- If S is present, M+2 will be 4% of M⁺. =>

Isotopic Abundance

TABLE 12-4	Isotopic Composition of Some Common Elements						
Element	M+		M+1		M+2		
hydrogen carbon nitrogen oxygen sulfur chlorine bromine iodine	¹ H ¹² C ¹⁴ N ¹⁶ O ³² S ³⁵ Cl ⁷⁹ Br ¹²⁷ I	$100.0\% \\ 98.9\% \\ 99.6\% \\ 99.8\% \\ 95.0\% \\ 75.5\% \\ 50.5\% \\ 100.0\%$	¹³ C ¹⁵ N ³³ S	1.1% 0.4% 0.8%	¹⁸ O ³⁴ S ³⁷ Cl ⁸¹ Br	0.2% 4.2% 24.5% 49.5%	

Copyright © 2005 Pearson Prentice Hall, Inc.

Mass Spectrum with Sulfur

Chapter 12

Mass Spectrum with Bromine

Copyright © 2005 Pearson Prentice Hall, Inc.

=>

fixed miri

IR source

laser calibration

Chapter 12

18

Mass Spectra of Alkenes

Resonance-stabilized cations favored.

methallyl cation, m/z 55

Mass Spectra of Alcohols

- Alcohols usually lose a water molecule.
- M⁺ may not be visible.

Chapter 12

What information we will obtain from mass spectra?

- The mass of the molecular ion.
- What for?
 - ➤To compare the mass of the molecular ion with the mass of the empirical formula of the compound under study.
 - If the molecular ion is twice as heavy as the mass of the empirical formula for the compound, then the molecular formula will be twice the empirical formula.

The UV-Vis Region

- Provides information regarding electronic structure.
- Just above violet in the visible region
- Wavelengths usually 200-750nm
- For wavelengths below 200nm, vacuum is required.

The UV-Vis Region

- Mostly used for systems with conjugated double bonds.
- 1-octene
- 1,3-butadiene
- 1,3,5-hexatriene

 λ_{max} =180nm λ_{max} =220nm λ_{max} =250nm

 β -carotene

 λ_{max} =480nm

Color is between red and orange (because it reflects those colors)

The IR Region

- Just below red in the visible region.
- Wavelengths usually 2.5-25 $\mu\text{m}.$
- More common units are wavenumbers, or cm⁻¹, the reciprocal of the wavelength in centimeters.
- Wavenumbers are proportional to frequency and energy.

Molecular Vibrations

Covalent bonds vibrate at only certain allowable frequencies.

Copyright © 2005 Pearson Prentice Hall, Inc.

Stretching Frequencies

Bond		Bond Energy [kJ	(kcal)] Strete	Stretching Frequency (cm ⁻¹)			
С—Н С—D С—С	heavier atoms	<i>Frequency decreases with</i> 420 (100) <note these<br="">420 (100) 350 (83)</note>	increasing atomic ma are trs> 3000 2100 1200	$\downarrow \overline{\nu}$ decreases			
Frequency increases with bond energy							
С-С		350 (83)	1200				
C = C		611 (146) strong	er 1660	u increases			
$C \equiv C$		840 (200) J bond	2200				

- Frequency decreases with increasing atomic mass.
- Frequency increases with increasing bond energy.

fixed min

isor ch

Vibrational Modes

Nonlinear molecule with *n* atoms usually has 3*n* - 6 fundamental vibrational modes.

Linear molecules will have 3n – 5 modes.

fixed mir

laser cal

Fingerprint of Molecule

- Whole-molecule vibrations and bending vibrations are also quantized.
- No two molecules will give exactly the same IR spectrum (except enantiomers).
- Simple stretching: 1600-3500 cm⁻¹.
- Complex vibrations: 600-1400 cm⁻¹, called the "fingerprint region."

IR-Active and Inactive

- A polar bond is usually IR-active.
- A nonpolar bond in a symmetrical molecule will absorb weakly or not at all.

Copyright © 2005 Pearson Prentice Hall, Inc.

fixed mirr

laser ca

Chapter 12

31

fixed mirro

FT-IR Spectrometer

- Has better sensitivity.
- Less energy is needed from source.
- Completes a scan in 1-2 seconds.
- Takes several scans and averages them.
- Has a laser beam that keeps the instrument accurately calibrated.

FT-IR Interferometer

Interferogram

The interferogram at the right displays the interference pattern and contains all of the spectrum information.

A Fourier transform converts the time domain to the frequency domain with absorption as a function of frequency.

Carbon-Carbon Bond Stretching

- Stronger bonds absorb at higher frequencies:
 - ≻C-C 1200 cm⁻¹
 - ≻C=C 1660 cm⁻¹
 - $>C \equiv C$ <2200 cm⁻¹ (weak or absent if internal)
- Conjugation lowers the frequency:
 ➢ isolated C=C 1640-1680 cm⁻¹
 ➢ conjugated C=C 1620-1640 cm⁻¹
 ➢ aromatic C=C approx. 1600 cm⁻¹

Carbon-Hydrogen Stretching

Bonds with more s character absorb at a higher frequency.

> sp³ C-H, just below 3000 cm⁻¹ (to the right)

 $> sp^2$ C-H, just above 3000 cm⁻¹ (to the left)

≻sp C-H, at 3300 cm⁻¹

An Alkane IR Spectrum

An Alkene IR Spectrum

An Alkyne IR Spectrum

39

O-H and N-H Stretching

- Both of these occur around 3300 cm⁻¹, but they look different.
 - ≻Alcohol O-H, broad with rounded tip.
 - Secondary amine (R₂NH), broad with one sharp spike.
 - Primary amine (RNH₂), broad with two sharp spikes.
 - >No signal for a tertiary amine (R_3N) . =>

An Alcohol IR Spectrum

An Amine IR Spectrum

Carbonyl Stretching

- The C=O bond of simple ketones, aldehydes, and carboxylic acids absorb around 1710 cm⁻¹.
- Usually, it's the strongest IR signal.
- Carboxylic acids will have O-H also.
- Aldehydes have two C-H signals around 2700 and 2800 cm⁻¹.

A Ketone IR Spectrum

An Aldehyde IR Spectrum

O-H Stretch of a Carboxylic Acid

=>

46

This O-H absorbs broadly, 2500-3500 cm⁻¹, due to strong hydrogen bonding.

Variations in C=O Absorption

- Conjugation of C=O with C=C lowers the stretching frequency to ~1680 cm⁻¹.
- The C=O group of an amide absorbs at an even lower frequency, 1640-1680 cm⁻¹.
- The C=O of an ester absorbs at a higher frequency, ~1730-1740 cm⁻¹.
- Carbonyl groups in small rings (5 C's or less) absorb at an even higher frequency. =>

An Amide IR Spectrum

Carbon - Nitrogen Stretching

- C N absorbs around 1200 cm⁻¹.
- C = N absorbs around 1660 cm⁻¹ and is much stronger than the C = C absorption in the same region.
- $C \equiv N$ absorbs strongly just *above* 2200 cm⁻¹. The alkyne $C \equiv C$ signal is much weaker and is just *below* 2200 cm⁻¹.

A Nitrile IR Spectrum

Copyright © 2005 Pearson Prentice Hall, Inc.

Summary of IR Absorptions

Strengths and Limitations

- IR alone cannot determine a structure.
- Some signals may be ambiguous.
- The functional group is usually indicated.
- The *absence* of a signal is definite proof that the functional group is absent.
- Correspondence with a known sample's IR spectrum confirms the identity of the compound.

End of Chapter 12