

Magnetic Shielding

7

- If all protons absorbed the same amount of energy in a given magnetic field, not much information could be obtained.
- But protons are surrounded by electrons that shield them from the external field.
- Circulating electrons create an induced magnetic field that opposes the external magnetic field.

Typical Values TABLE 13-3 Typical Values of Chemical Shifts				
Type of Proton	Approximate δ	Type of Proton	Approximate δ	induced magn
alkane (—CH ₃)	0.9	>c=c<	1.7	
alkane (—CH ₂ —)	1.3	CH3		
alkane (ÇH)	1.4	Ph-H	7.2	
()		Ph-CH ₃	2.3	
0		R-CHO	9-10	
$-C - CH_3$	2.1	R-COOH	10-12	
−С≡С−Н	2.5	R—OH	variable, about 2-5	
$R - CH_2 - X$	3-4	Ar—OH	variable, about 4-7	
(X = halogen, O)		R-NH.	variable about 1 5-4	
>c=c< ^H	5-6			
Note: These values are ap numbers given here assur- table of chemical shifts a	pproximate, as all chemica me that alkyl groups are th ppears in Appendix 1. Copyright © 2005 Per	I Il shifts are affected by nei Ie only other substituents p arson Prentice Hall, Inc.	ighboring substituents. The present. A more complete	=> 18

23

- Nonequivalent protons on adjacent carbons have magnetic fields that may align with or oppose the external field.
- This magnetic coupling causes the proton to absorb slightly downfield when the external field is reinforced and slightly upfield when the external field is opposed.
- All possibilities exist, so signal is split. =>

Range of Magnetic Coupling

=>

33

- Equivalent protons do not split each other.
- Protons bonded to the same carbon will split each other <u>only</u> if they are not equivalent.
- Protons on adjacent carbons normally will couple.
- Protons separated by four or more bonds will not couple.

Stereochemical Nonequivalence

- Usually, two protons on the same C are equivalent and do not split each other.
- If the replacement of each of the protons of a -CH₂ group with an imaginary "Z" gives stereoisomers, then the protons are nonequivalent and will split each other.

=>

41

Chapter 13

Time Dependence

- Molecules are tumbling relative to the magnetic field, so NMR is an averaged spectrum of all the orientations.
- Axial and equatorial protons on cyclohexane interconvert so rapidly that they give a single signal.
- Proton transfers for OH and NH may occur so quickly that the proton is not split by adjacent protons in the molecule.

=>

Identifying the O-H or N-H Peak

=>_46

- Chemical shift will depend on concentration and solvent.
- To verify that a particular peak is due to O-H or N-H, shake the sample with D₂O.
- Deuterium will exchange with the O-H or N-H protons.
- On a second NMR spectrum the peak will be absent, or much less intense.

Proton Spin Decoupling

- To simplify the spectrum, protons are continuously irradiated with "noise," so they are rapidly flipping.
- The carbon nuclei see an average of all the possible proton spin states.
- Thus, each different kind of carbon gives a single, unsplit peak.

=>

53

Chapter 13

Interpreting ¹³C NMR

55

- The number of different signals indicates the number of different kinds of carbon.
- The location (chemical shift) indicates the type of functional group.
- The peak area indicates the numbers of carbons (if integrated). – Not always true.
- The splitting pattern of off-resonance decoupled spectrum indicates the number of protons attached to the carbon. =>

MRI

=>

57

- Magnetic resonance imaging, noninvasive
- "Nuclear" was omitted because of public's fear that it would be radioactive.
- Only protons in one plane can be in resonance at one time.
- Computer puts together "slices" to get 3D.

Chapter 13

• Tumors readily detected.

