
Several textbooks1 assert that there is 
no way of choosing the five d orbitals so that they have 
the same shape but differ only in their orientation; 
and, so far as the writer is aware, no textbook author 
has written down such a set of d orhitals. Yet, as 
early as 1940, George E. Kimball, in his classic memoir 
on the application of group theory to directed valence 
(I), pointed out that five equivalent d orbitals could be 
directed along the slant edges of a pentagonal pyramid. 
If for no other reason than to call attention to Kimhall's 
result, it seems worth while to set down here the five 
orhitals. 

Richard E. Powell 
University of California 

Berkeley 

Group-Theoretic Proof of Existence 

Textbook Errors, 81 

The Five Equivalent d Orbitals 

The reader who is unfamiliar with group theory may 
skip at once to the following section, or he may refer to 
a monograph such as Cotton's (%). 

The first step in the proof is to evaluate the set of 
characters for the representation based upon a pentag- 
onal pyramid, most simply by counting the number of 
orbitals, directed along the slant edges of a pentagonal 
pyramid, which remain unshifted by each of the four 
possible symmetry operations. The identity operation, 
E, leaves all 5 orbitals unshifted. The rotation by one- 
fifth a turn, C6, leaves none unshifted. So does the 
rotation by two-fifths a turn, CsZ. The operation of 
reflection through a vertical plane (i.e., a plane passing 
through the axis and one orbital), u,, leaves one orbital 
unshifted. In summary, 

r (pentagonal pyramid) = E, Cs, C2, 0, 
5, 0, 0, 1 

The second step in the proof is to express this repre 
sentation as a linear combination of irreducible repre- 

Table I. Character Table for the Group C6, 

A, 1 1 1 1 
A* 1 1 1 - 1 
El 2 2 cos s/5 2 cos 2r/5 0 
8 2  2 2 cos 2r/5 2 cos r/5 0 

sentations for the symmetry group C6-. The standard 
procedure is to multiply the characters just found by 
the corresponding characters of each irreducible 
representation as listed in the Character Table for 
C6,, (Table I), to sum the resulting products after 

Suggestions of material suitable for this column and guest 
columns suitable for puhlioation directly should be sent with as 
many details as possible, md particularly with references to 
modern textbooks, to W. H. Eberhardt, School of Chemistry, 
Georgia Institute of Technology, Atlanta, Ga., 30332. 

I Since the purpose of this column is to prevent the spread and 
the continuation of errors md not the evaluation of individual 
texts, the sources of errors discussed will not he cited. In order 
to be presented an error must occur in at least two independent 
recent standard books. 

multiplying each by the number of such operations, and 
to divide the total by the order of the group, in this 
instance 10. The result is for A1, 1; for Az, 0; for 
El, 1; and for EX, 1. In summary, 

r (pentagonal pyramid) = AI + El + Ez 

The third and last step in the proof is to ascertain 
whether or not the set of five d orbitals provides a basis 
for this same representation. It does. The d.. 
orbital transforms like Al, the pair d ,  and d ,  like El, 
and the pair d,.- ., and d., like E2. This completes 
the proof. 

One further conclusion can be reached without 
numerical comnutation. Since the d orbitals are 
gerade, i.e., symmetric with respect to the center of 
inversion, the five equivalent orbitals must extend in 
both directions, along the slant edges of two pentagonal 
pyramids with a common vertex, as in the structure of 
ferrocene (Fig. 1). This is the symmetry of the gerade 
representations of the Dad group, the pentagonal anti- 
prism. 

TOP VIEW 
S I D ~ V I E W  

Figure 1 .  The direction. of the flve equivalent d orbitolr. 

The Shape of the Orbitals 

Let us label the five pyramidal d orbitals hythefrac- 
tions of a full turn by which they are rotated around the 
z axis, viz., do, dl/,, d./,, dy,, and dy, .  Each of them 
has to be expressible as a linear combination of the 
five d orbitals in any other representation. Thus, 

do = cd.r + c&. + cad, + cld.9- ., + cad., 

Inasmuch as the dS2 orbital is unaffected by the opera- 
tions of rotation or reflection, it must contribute equally 
to all five pyramidal orbitals; therefore, apart from 
sign, the coefficient cl is *. Consider, now, the 
pyran~idal orbital at + = 0. Reflection in a vertical 
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plane must leave it  unchanged; d,,, which is propor- 
tional to cos 4, and d,~-  .., which is proportional to 
cos 24, are unchanged by that reflection; hut d,,, 
which is proportional to sin 4,  and d,,, which is pro- 
portional to sin 24, go into their negatives by that re- 
flection; wherefore, the coefficients cs and ca must be 
zero. Inasmuch as the sum of squares of coefficients 
has to he unity, cz2 + en2 = 4/5. Consider, next, the 
orthogonality of the several orbitals to one another. 
Upon forming dv, by replacing 4 by (4 - 2s/5) and 
then multiplying each coefficient of dy,  by the cor- 
responding coefficient of do, we obtain a sum which 
orthogonality requires to be zero, viz., 

+ c 2  cos 2 r l 5  - c4+os r / 5  = 0 

The orthogonality of d.,, with do gives 

- ca2 cos r/5 + era cos 2r /5  = 0 
But for these simultaneously to be true requires - cZZ = 

ea2. Hence, apart from sign, c2 = ca = d\/Z/5. For 
the moment taking all three coefficients as positive, we 
have 

Once these coefficients for do have been obtained, the 
coefficients for all the other four orbitals are uniquely 
determined. One need only replace d, and d,.-,* by 
the orbitals into which each of them is transformed upon 
replacing 4 successively by 4 - 2s/5, 4 - 4s/5, 
4 - 6a/5, and 4 - 8rr/5. The full results, written in 
matrix form for the sake of compactness, are given in 
Table 2. Since the five pyramidal d orbitals constitute 

Table 2. Coefficients Giving the Pyramidal d Orbitals 

a complete orthogonal set, the process can he reversed 
to give the more familiar cubic d orbitals as linear com- 
binations of the pyramidal. The inversion of the matrix 
is left as an exercise for the student. 

Upon inserting the known angular functions (nor- 
malized to unity) for dS2, d,,, and d+,., we obtain the 
following explicit expression for the angular dependence 
of the do orbital: 

do = (3/~r)"'[('/dL'9(3 eoSa 0 - 1) + sin 28 cos4 + sin' 0 eos 241 

Apart from rotation by successive one-fifth turns around 
the z axis, the other pyramidal orbitals have this same 
angular dependence. Each orbital has its maximum 
at  0 = 41" 47.65', i.e., tipped up from the equatorial 
plane at  an angle of 48" 12.35'. The model from which 
Figure 1 was sketched was built to these specifications. 

Figures 2 through 7 display the calculated "shape" of 
any one pyramidal d orbital, as follows: Figure 2, side 

Figure 2. Angular factor of eigen- 
function for o pyramidal d orbital. Figure 3. Squore of mngulm foc- 
ride view. tor, l ido view. 

view of the angular factor of the eigenfunction; Figure 
3, square of the same; Figure 4, side view of contour 
map of position probability density (at 10yo intervals 
from its maximum value), constructed by multiplying 
the square of the angular factor by r4 e-', the radial 
factor appropriate to a 3d orbital; Figure 5, top view 

Figure 4. Position probability contours. ride view, 

(looking down the z axis) of the angular factor in section 
through the plane of its maximum; Figure 6, square of 
the same; and Figure 7, top view of position probability 
contours. 

Unlike the familiar four-lobed cubic d orbital, the 
pyramidal d orbital has only rather inconspicuous lobes 

Figure I Angular factor, top view. 

Figure&. (Right). Sqvoreof on- 
gular factor, top view. 

46 / Journol o f  Chemical Education 



Figure 7. Position probability contours, top view, 

of opposite sign. Each orbital is not quite cylindricdly 
svmmetrical about its own axis of maximum ~roha-  
Gaty. 

It will be recalled that provisionally we took all three 
coefficients in do to be positive. Let us now return to 
that question. The signs are not settled by symmetry 
arguments, so that in principle each of the three could 
be positive or negative, giving 23 = 8 sign combinations 
in all. However, three-fourths of these are trivial: 
they correspond to the principal lobe having negative 
rather than positive sign, or to it being directed to the 
second quadrant of 0 rather than the first. There re- 
main, however, txo  choices of sign which do lead to 
orbitals differing in shape. One we have discussed, 
which has all signs positive. The other has cl negative 
but cz and ea positive. The side view of the resulting 
orbital is shown in Figure 8. The principal lobe is 
tipped up at an angle of only 20' 58.65' from the equa- 
torial plane, and the lobes of opposite sign are com- 
paratively large. Thus there exist not one, but two, 
sets of 5 equivalent d orbitals. 

Figure 8. Angular factor of alternative pyramidal eigenfunction, ride 
view. 

Bond Formation 

The geometry of the pyramidal d orbitals suggests 
that, to the Valence Bond approximation, equivalent 
d bonds could he made to cyclopentadiene in the metal 
cyclopentadienyls. For instance, T1(CsHs) could have 
five two-electron d bonds, and ferrocene, Fe(CsHs)p, 
could have ten one-electron d bonds, the remaining 

electrons occupying non-bonding s2ps orbitals, giving 
the central metal atom an 1Belectron rare gas con- 
figuration. This approximation has undoubtedly some 
merit. I t  is, however, naive on several counts. (1) 
There must occur mixing of d orbitals with other orbitals 
having the same symmetry. In  ferrocene, for instance, 
the d,. orbital and the s orbital have the same sym- 
metry, so that the appropriate binding orbital has to 
he a hybrid of the tvo. For Tl(C5Hs), whose bonds 
do not have to be possess central symmetry, there can 
be additional hybridization with a p, orbital. (2) The 
p orbitals, even though they have the wrong symmetry 
to mix with the d orbitals, may form orbitals of signifi- 
cant stability with the ligand rings. (3) The presence 
of the ligands d l ,  in general, split the degeneracy of 
the otherwise equivalent orbitals. In  ferrocene, the 
metal-to-carbon bond is tipped up from the equatorial 
plane some 6 degrees farther than the pyramidal d 
orbitals, and the splitting between the highest and 
the lowest d molecular orbital is computed to he 3.08 
to 4.63 ev. The reader who is interested in pursuing 
these bonding questions is referred to the considerable 
literature on 1x0 calculations for metal cyclopenta- 
dienyls (5-8). 

Other Pyramidal Orbitals 

The same line of argument applies to orbitals of 
other azimuthal quantum numbers. Thus, there are 
three equivalent p orbitals (one set) directed along the 
slant edges of a trigonal pyramid; seven equivalent f 
orbitals (four different sets) directed along the slant 
edges of an heptagonal. pyramid; nine equivalent g 
orbitals (eight different sets) directed along the slant 
edges of anine-sided pyramid; and so on. 

For p orbitals, this is a well known result. Taking 
the z axis as the axis of rotational symmetry and pro- 
ceeding as above, we easily obtain 

PO = d X  P, + 4% Pi 
This gives for the angular factor, 

which corresponds to a p orbital of the familiar shape, 
tipped up at 35' 16' from the equatorial plane. 

For f orbitals, the pyramidal orbital is given by 

.fa = 4 7 x 3  + dij,'fcaa m + 457 .fco..m + fl fco. 

which gives, for its explicit angular dependence, 

jo = (l/l.r)l/l [(5 COS* 8 - 3 cos 8) + 3''' sin 8 (5  cost 8 - 1) 
eos 4 + 30"' sina 8 eos 8 cos 24 + 5'/' sin8 8 cos 341 

As written, this pyramidal f orbital has all its coefficients 
positive; but there are three other combinations, with a 
principal lobe of positive sign in the first quadrant. 
They have signs -+++, --++, and +++-, 
respectively. The orbital with all-plus coefficients has 
two strong oppositely-directed lobes, ulth rather small 
intermediate lobes. The other three sets have suc- 
cessively larger intermediate lobes. 
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