Coordination Chemistry I: Structures and Isomers Based on "Inorganic Chemistry", Miessler and Tarr, 4th edition, 2011, Pearson Prentice Hall Images from Miessler and Tarr "Inorganic Chemistry" 2011 obtained from Pearson Education, Inc.

Coordination compounds

- Term usually used in inorganic chemistry to include compounds composed of a metal atom or ion and one or more ligands
- Ligands are atoms, ions or molecules that formally donate electrons to the metal
- This definition includes compounds with metal-carbon bonds, or organometallic compounds

Coordination compounds (cont.)

- The term coordination compound comes from the coordinate covalent bond, which historically was considered to form by donation of a pair of electrons from one atom to another
- The donors are usually the ligands, and the acceptors are the metals
- Coordination compounds are also acid-base adducts, frequently called complexes or, if charged, complex ions

History

- Prussian blue, aureolin and alizarin were pigments / dyes known since antiquity
- Advances in analytical methodology allowed for the determination of formulas, and theories of structure and bonding became possible
- But organic chemistry bonding theory was not adequate to account for the experimentally determined formulas of some coordination compounds
 - Hexaamminecobalt(III) chloride only three other atoms were "allowed" to attach to cobalt

TABLE 9.1 Comparison of Blomstrand's Chain Theory and Werner's Coordination Theory				
Werner Formula (Modern Form)	Number of Ions Predicted	Blomstrand Chain Formula	Number of Ions Predicted	
[Co(NH ₃) ₆]Cl ₃	4	$C_{0} = \frac{NH_{3}-Cl}{NH_{3}-NH_{3}-NH_{3}-NH_{3}-Cl}$	4	
[Co(NH ₃) ₅ Cl] <i>Cl</i> ₂	3	$\overbrace{Cl}^{NH_3 - Cl} - NH_3 - NH_3 - NH_3 - NH_3 - Cl$	3	
[Co(NH ₃) ₄ Cl ₂] <i>Cl</i>	2	C_0 $ NH_3$ $ NH_3$ $ NH_3$ $ NH_3$ $ Cl$ Cl Cl $ NH_3$ $ Cl$ $ NH_3$ $ NH_3$ $ Cl$ $ NH_3$	2	
[Co(NH ₃) ₃ Cl ₃]	0	$C_0 - NH_3 - NH_3 - NH_3 - Cl$	2	

NOTE: The italicized chlorides dissociate in solution, according to the two theories.

© 2011 Pearson Education, Inc.

³ A. Werner, Z. Anorg. Chem., **1893**, 3, 267; Berichte, **1907**, 40, 4817; **1911**, 44, 1887; **1914**, 47, 3087; A. Werner and A. Miolati, Z. Phys. Chem., **1893**, 12, 35; **1894**, 14, 506; all translated by G. B. Kauffman, Classics in Coordination Chemistry, Part 1, New York, 1968.

Werner vs other chemists

- This complex was originally prepared by Jorgensen and Werner was able to resolve it into its two optically active forms
- This complex does not has carbon atoms

Primary vs secondary bonding

- Primary bonding required counterbalance ions
- Secondary bonding were that of the ligands now known as coordination sphere
- Current practice considers the coordination sphere more important so the words primary and secondary exchanged the significance

Tetrahedral vs square planar

cis- and trans- Diamminedichloroplatinum(II), [PtCl₂(NH₃)₂]

© 2011 Pearson Education, Inc.

Some facts

- Werner's theory required more bonds than that commonly accepted
- 18-electron-rule is useful to account the number of valence electrons around the central atom
- Pauling used his **valence bond** approach to explain differences in magnetic behavior by use of either 4s or 3d orbitals
- Griffith and Orgel developed and popularized the use of ligand field theory derived from the crystal field theory of Bethe and Van Vleck

Nomenclature

- Organic and some inorganic ligands are frequently named using older trivial names rather than IUPAC names, although IUPAC names are preferred
- Ligands can be monodentated (one point of attatchment), ambidentaded (two mutually exclusive points of attachment), bidentated (two points of attachment), tridentated, etc.
- Bidentated and multidentated ligands usually are called chelating ligands because they can from rings

Common Name	IUPAC Name	Formula
hydrido	hydrido	Η-
nitrido	nitrido	N ³⁻
azido	azido	N_3^-
охо	oxido	O ²⁻
cyano	cyano	CN^{-}
thiocyano	thiocyanato-S (S-bonded)	SCN ⁻
isothiocyano	thiocyanato-N (N-bonded)	NCS ⁻
hydroxo	hydroxo	OH^{-}
aqua	aqua	H ₂ O
carbonyl	carbonyl	СО

272

5//221

.

TABLE 9.3 Common Chelating Amines

Chelating

Points	Common Name	IUPAC Name	Abbreviation	Formula
monodentate	ammine, methylamine	ammine, methylamine		NH ₃ , CH ₃ NH ₂
bidentate	ethylenediamine	1,2-ethanediamine	en	NH ₂ CH ₂ CH ₂ NH ₂
tridentate	diethylenetriamine	2,2'-diaminodiethylamine or 1,4,7-triazaheptane	dien	NH ₂ CH ₂ CH ₂ NHCH ₂ CH ₂ NH ₂
tetradentate	triethylenetetraamine	1,4,7,10-tetraazadecane	trien	NH ₂ CH ₂ CH ₂ NHCH ₂ CH ₂ NHCH ₂ CH ₂ NH ₂
	eta, eta' , eta'' - triaminotriethylamine	eta, eta', eta''-tris(2-aminoethyl)amine	tren	$NH_2CH_2CH_2NCH_2CH_2NH_2$ $CH_2CH_2NH_2$
pentadentate	tetraethylenepentamine	1,4,7,10,13- pentaazatridecane		NH ₂ CH ₂ CH ₂ NHCH ₂ CH ₂ NHCH ₂ CH ₂ NHCH ₂ CH ₂ NH ₂
hexadentate	ethylenediaminetetraacetate	1,2-ethanediyl (dinitrilo) tetraacetate	EDTA	-OOCCH ₂ CH ₂ COO- NCH ₂ CH ₂ N CH ₂ COO-

© 2011 Pearson Education, Inc.

Common Name	IUPAC Name	Abbreviation	Formula and Structure
acetylacetonato	2,4-pentanediono	асас	CH ₃ COCHCOCH ₃ $-$ O $-$ O H ₃ C $-$ O H ₃ C $-$ O H
2,2'-bipyridine	2,2'-bipyridyl	bipy	C ₁₀ H ₈ N ₂
1,10-phenanthroline, o-phenanthroline	1,10-diaminophenanthrene	phen, o-phen	C ₁₂ H ₈ N ₂
oxalato	oxalato	ох	$C_2 O_4^{2-}$ $- \int_0^0 C - C (2)$

- Positive ion comes first, then the negative ion
 - Potassium hexacyanoferrate(III)

- Ion negativo se escribe primero, luego el positivo
 - Hexacianoferrato(III) de potasio

- Inner coordination sphere is enclosed in square brackets in the formula, the metal is written first in the formula but last in the name
 - Hexamminecobalt(III) chloride, [Co(NH₃)₆]Cl₃
- La esfera de coordinación interna se coloca en "brackets", el metal se escribe primero en la fórmula, pero último en el nombre
 - Cloruro de hexaaminocobalto(III), [Co(NH₃)₆]Cl₃

- The number of ligands is given with prefixes
- If the ligand name is complicated or it includes a prefix, the second prefix is used (the one ending with "is")
 Dichlorobis(ethylenediamine)cobalt(III)
 Tris(bipyridine)iron(III)

Diclorobis(etilendiamina)cobalto(III) Tris(bipiridina)hierro(III)

2	di	bis
3	tri	tris
4	tetra	tetrakis
5	penta	pentakis
6	hexa	hexakis
7	hepta	heptakis
8	octa	octakis
9	nona	nonakis
10	deca	decakis

- Ligands are named in alphabetical order, according to the name of the ligand, not the prefix
- Earlier rule gave anionic ligands first, then neutral ligands
- Tetraamminedichlorocobalt(III)
- Amminebromochloromethylamineplatinum(II)

- Anionic ligands are given an *o* suffix
 - Chloro
 - Bromo
 - Sulfato
- Neutral ligands retain their usual name
- Coordinated water is called aqua
- Coordinated ammonia is called ammine

- Two systems exists for designating the charge or oxidation number: Stock system (oxidation number of metal ion as a Roman numeral) and Ewing-Basset system (charge of coordination sphere as a "normal" numeral)
- Ewing-Basset is used in Chemical Abstracts
- In either case, if the charge is negative, the suffix —ate (—ato in Spanish) is used
- Tetrachloroplatinate(II) or tetrachloroplatinate (2-) for the $[PtCl_4]^{2-}$ ion
- Tetraammineplatinum(II) or tetraammineplatinum (2+) for the $[Pt(NH_3)_4]^{2+}$ ion

• Cis and trans designate adjacent and opposite geometric locations (as in organic chemistry)

© 2011 Pearson Education, Inc.

• Bridging ligands between two metal ions have the prefix μ as in μ -amido- μ -hydroxobis(tetraamminecobalt) (4+)

© 2011 Pearson Education, Inc.

- When the complex is negatively charged, the names for some metals are derived from the sources of their symbols
- Tetrachloroferrate(III) for the [FeCl₄]- ion
- Tetracloroferrato(III) para el ión [FeCl₄]-

iron (Fe)ferratelead (Pb)plumbatesilver (Ag)argentatetin(Sn)stannategold (Au)aurate

Isomerism

- The variety of coordination numbers in coordination compounds provides with a large number of isomers, the number of which increases with coordination number
- Our discussion will be limited to isomers with the same ligands arranged in different geometries; types are:
 - Hydrate or solvent isomerism
 - Ionization isomerism
 - Coordination isomerism
 - Linkage (or ambidentate) isomerism
 - Stereoisomerism

Stereoisomerism

- cis/trans isomers
- Chiral isomers
- Different conformation of chelate rings
- Other isomers that differ only in the geometry of attachment to the metal atom

fac/mer Isomerism in 6-coordinate complexes

• Ligands can occupy the face of the octahedron or a meridian line

Isomerism – combination of chelate rings – propellers – Δ and Λ isomers

Multiple Δ and Λ rings and ring conformation

• Ligands such as EDTA will form multiple rings

- Chelate rings can also adopt different conformations (designated δ and $\lambda)$ - we will not focus on them

Constitutional isomerism

• Hydrate (or solvent) isomerism

 $[\mathrm{Co}(\mathrm{NH}_3)_4(\mathrm{H}_2\mathrm{O})\mathrm{Cl}]\mathrm{Cl}_2$ and $[\mathrm{Co}(\mathrm{NH}_3)_4\mathrm{Cl}_2]\mathrm{Cl}\bullet\mathrm{H}_2\mathrm{O}$

Ionization isomerism

 $[Co(NH_3)_4(H_2O)Cl]Br_2$ and $[Co(NH_3)_4Br_2]Cl \cdot H_2O$

Coordination isomerism

 $[Co(en)_3][Cr(CN)_6]$ and $[Cr(en)_3][Co(CN)_6]$

Linkage (ambidentate) isomerism
 Ligands such as NCS⁻ or NO₂⁻ which have two attachment points

Experimental separation and identification of isomers

- Geometric isomers are separated with fractional crystallization
- Chiral isomers requires chiral counterions
- Best identification method, when crystallization allows it, is X-ray diffraction
- Measurement of optical activity is useful for assigning absolute configuration to chiral isomers

- Overall shape of a coordination compound is the product of several factors:
 - Number of bonds
 - VSEPR considerations
 - Occupancy of d orbitals
 - Steric interference
 - Crystal packing effects

- Coordination number 1 is rare, except in ion pairs in gas phase
- Coordination number 2 is also rare, [Ag(NH3)2]+, [CuCl2]and Hg(CN)2 are well-known examples with a d10 metal ion and are linear
- Coordination number 3 is likely with d10 metal ions, with a trigonal-planar structure being the most common

- Coordination number 4 results in a tetrahedral or squareplanar structure; tetrahedral is most common
- Square-planar structures, when not imposed by a planar ligand, occur for d8 metal ions

- Coordination number 5 can result in trigonal bipyramid, square pyramid and pentagonal plane (extremely rare).
- The energy difference is small and structures can interconvert

- Coordination number 6 is the most common, with octahedral geometry the most common
- Other structures are trigonal prismatic and antiprismatic
- A regular octahedron can be distorted to tetragonal structures

• Coordination number 7 and higher are not common

